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LE'lTER TO THE EDITOR 

Directed percolation: pseudo-correlation length 

W KleintS and W Kinzel? 
t Institut fur Festkorperforschung der Kernforschungsanlage Jiilich, 5 170 Jiilich, Postfach 
1913 West Germany 
$ Center for Polymer Studies and Department of Physics, Boston University, Boston, 
Massachusetts 02215 USA 

Received 15 July 1981 

Abstract. We show that the perpendicular correlation length c1 in directed percolation 
does not behave as a length under renormalisation but is a length times an angle. This has 
consequences for the renormalisation group analysis and hyperscaling which are discussed. 

Percolation (for introductions to the subject see review articles by Stauffer (1979) and 
Essam (1980), and in particular directed percolation, has been the subjects of much 
current interest. 

The interest in directed percolation is stimulated by the fact that it is in a different 
universality class than ordinary percolation (Obukhov 1980, Redner 198 1, Redner and 
Brown 1981, Reynolds 1981) and by its similarity to Reggeon field theory (Cardy and 
Sugar 1980) and Markov process that occur in chemistry and biology (Grassberger and 
Torre 1979, Schlogl 1972). 

Directed percolation is defined as follows (Broadbent and Hammersley 1957): 
consider a square lattice on which horizontal bonds are present with probability pH and 
vertical bonds with a probability pv. We further restrict the problem so that bonds 
which are present have a direction: down for vertical bonds and to the left for horizontal 
bonds (see figure 1). 

A correlation length h l ( c p )  can be defined by writing the probability of a site at the 
origin being connected to a site at a position given by R as (P(R, p )  = exp[ - -~R~/&~~(p) ]  in 
the limit (RI + 00. As the percolation threshold is approached 

tIl((P) - [ P  -Pc (@) l -~ l l ( (P) .  (1) 
As opposed to ordinary percolation p c ( 8 )  and vll(@) depend on the angle the vector R 
makes with the bond directions. For example, if we consider the case pH = pv = p and 
take the angle 8 to be measured from the diagonal of the square face (see figure 2) it was 
shown by Domany and Kinzel (1981) that q ( c p  = 0) # vll(cp # 0). 

Another feature of directed percolation that distinguishes it from ordinary percola- 
tion is the apparent divergence of two lengths. In addition to the length defined above 
one can ask for the probability that two sites separated by a distance p along a direction 
perpendicular to R belong to the same cluster (see figure 3). This defines a correlation 
length t1 which was shown by Kinzel and Yeomans (1981) to diverge as 

&L - EP -Pc(cp)l-vi(cp) (2) 
$ Present and permanent address. 
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Figure 1. A cluster of 3 sites in the directed percolation problem. There is a path from site 2 
to site 3 but no path from site 3 to site 2. 

Figure 2. The arrows labelled p are along the direction of the face of the square. Permlation 
is observed along the R direction that makes an angle cp with the diagonal of the face. 

Figure 3. The direction for RI is taken along cp1= 0. The vector Rz makes an angle cp2 with 
RI. 61 and 5; are the longitudinal and transverse diameters of the percolating cone. 
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where vl(cp) # vll(cp) and as before v,(8 = 0) # vl(cp # 0). This length tl. gives the width 
of the cigar-shaped percolating cone (figure 3). In order to understand this phenomena 
Kinzel and Yoemans introduced an anisotropy exponent 8 defined by the relation 

8 = q / v l *  (3) 

si = & / b  (4) 

5: = s l . / b l / e .  ( 5 )  

Equations (1) to (3) and the scaling relation 

lead to the result 

Finite size renormalisation group (RG) calculations give (Kinzel and Yeomans 1981) for 
Q = o  

8 = 1.582* 0.001 vl = 1.098 * 0.005. (6) 

In this letter we present arguments that relate the anisotropy exponent 6 of Kinzel 
and Yeomans to the crossover exponent x,  defined by 

[P -pc(cp)l= (40 - P c Y  (7) 

where p and cp are varied in such a way as to remain on the critical curve. The argument 
proceeds as follows. 

In order to calculate the exponent vI(cp) we must have a more precise definition of 
what it means to have two sites belonging to the same cluster if they are separated by a 
distance p along the perpendicular to R (figure 3). Consideration of figure 3 immedi- 
ately yields the conclusion that there is no connected path of directed bonds that links 
two sites perpendicular to R. Two such sites can only be said to belong to the same 
cluster if they are both connected to the same site along two directions RI and RZ (figure 
3). We shall call such a common point a reference point. 

The transverse correlation length is then defined as the distance measured from site 
1 (which is along RI, a distance IR1( from the reference point) to site 2 (along Rz, 
from the reference point) such that RI -R2 is perpendicular to RI and sites 1 and 2 are 
connected to the reference site, i.e. lRll, lRzl= 511. 

It now follows that 

tl = IR1 -&I = IR1l tan(cp1- cpz) ( 8 )  

Asp approaches p,(cpl) we must have that cpl + cpz so that .~11(cp~)  also diverges and sites 
1 and 2 remain in the same cluster. Defining cpl - cpz = Acp this requirement implies that 

61 = 6llAQ (9) 

as p + pC(cpd. 
From equation (9) it is clear that although has the units of a length (it is in fact an 

arc length), it will not behave under RG as a length since AV is also renormalised. This 
will be seen in more detail below. 

We shall refer to this length tl as a pseudolength. 
Equation (9) will enable us  to derive various relations for 8. Under RG we must have 

that 

&./si = b Y Q b  (10) 

where b is the rescaling length of our transformation and yQ the scaling power 
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associated with AV. In the following we shall omit the arguments, but it is understood 
that all quantities may have an angle dependence. From equations (4), (5 ) ,  (9) and (10) 
we have 

i / e  = 1 - y(p (11) 

5: = ( l /bl-")&. (12) 

or 

For small values of Ap = p  -pc(cp) we have 5;(bYPAp) = (l/b*-y+')51(Ap). Standard 
scaling arguments and equation (2) give 

Yl. = (1 - YV)/YP (13) 

(14) 

which can be simply rewritten as 

VI = VI/ - x 

where x is the crossover exponent defined in equation (7). 
From equation ( 3 )  we can also write 

e = ( v ~ ~ / ( v ~ ~  - XI = (X + vl)/vl. (15) 
Another important consequence of equation (9) is a more complicated form of 

hyperscaling than is found in standard percolation. This can be seen most easily from 
the requirement that hyperscaling hold, written in the following way: 

n(Ap)td =constant. (16) 
For standard percolation n (Ap) is the mean number of clusters per reference site or the 
percolation 'free energy per site.' Physically equation (16) is a requirement that the 
'free energy' per site associated with a region the size of an incipient infinite cluster 
scales with the volume. In directed percolation however the volume of an incipient 
infinite cluster is given by i $ h ~ A q ) ~ - ~  as p +pc.  This implies that for directed 
percolation d should be replaced in equation (16) by d - y,(d - 1). This substitution 
gives the hyperscaling equality 

2 - a  =[d-y,(d-l)]vll. (17) 

2 - a  = [(d - 1 ) +  8]vl. (18) 

From equations (3) and (11) we can also write 

The interpretation of equations (17) and (18) is that hyperscaling laws which relate 
correlation function exponents such as Y and (as we will see below) 77 (which can be 
chosen in the parallel or perpendicular direction) to global quantities such as a, p and y 
require that VI/ be associated with dil= d - y,(d - 1) and vl be associated with d, = 
d - 1 + 8 .  

It is a simple matter to see that both equations (17) and (18) reduce? to 

2 - a  =vl+vli (19) 
in d = 2. 

We now derive, using arguments similar to those used above, a relation between 

WII = 4 -  2 + 7711 (20) 
f Similar scaling relations can be derived from mean-field considerations (S Redner, unpublished). 
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At p c  the probability that two sites, one at the origin and another at R1 (labelled SI), 
belong to the same cluster is given by 

P(R1, p , )  = l / ~ R 1 / d ~ ~ - z + q ~ ~  = l/IR11"11. (21) 
The probability that a site at R I  is in the same cluster as a site at a distance p along a 
direction perpendicular to R I  (labelled s2) is given by (for R1 going to infinity) 

P(p, p, )  = l/pd,-Z+q, = l/p". (22)  

l/IRzl"" = l/p"' (23)  

P/lRz1= AQ (24 )  

From the same arguments as above we must have that 

and 

where RZ is the position vector of SZ. Equation (24)  implies that p is again a 
pseudo-length. Scaling under RG then requires that 

Wll/Wi = 1 - -yW = i /e.  (25 )  

We illustrate these points for the special case pH = 1, pv = p ,  a model which was 

Domany and Kinzel have shown that the probability that two sites are connected 

P(P7 ff) = I exp(-b2) dy (26)  

where a =tan cp, E = ( x  - x c ) / x c ,  n = a p  and nc = a/(l +a). From the definitions for n,  
and n is is clear that the crossover exponent x = 1. It can be easily seen from equation 
(26 )  that q= 2.  We have immediately from the above discussion that 

solved exactly for p c  and vll (Domany and Kinzel 1981). 

along a vector RI making an angle cp with the diagonal is given by 
E [Rl/n,11/2 

-CRI/~,I ' /~  

V I =  1. (27)  

It can also be shown from equation (26)  that U / / =  0. From equation (25 )  mi = 0. 

With these results and standard scaling arguments one can easily obtain 
These values also lead to dil= $ and d1 = 3 .  

(28 )  1 p=o ,  y = 3 ,  7711 = 57 q1= -1. 

The value p = 0 is interesting in that it may indicate a type of first-order character for 
the percolation' transition usually associated with one-dimensional problems. 

The physical interpretation of p = 0 is the following. If we consider an angle cp for 
which p,(cp) is not the minimum possible p c  as a function of cp, then when percolation 
occurs at an angle cp there is an infinite cluster of finite measure that already exists on the 
lattice. Asp then approaches pc(cp) from above, the measure of the infinite cluster does 
not go to zero as in ordinary percolation. For the special case pH = 1 this is true for all 
angles except the special direction parallel to the pH axis. Equation (26)  can also be 
used as the basis for an RG calculation. Consider a cell in the two-dimensional square 
lattice with sides of length L (figure 4). Equation (26)  allows us to calculate the 
probability that there exists a path across the cell at an angle p. 
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L : 4  

Figure 4. Renormalisation group cells for L = 4 and b = 2 .  

If we renormalise to a cell of length L’ = L/b and demand that the probability of 
there being a path across the cell at cp be conserved, equation (26) yields 

e ’ [R l /n ,b11 /2  E [ R  l / n c l l / z  

exp(-iy2) dy = \ exp(-$y2) dy. (27) I - [R i /n ,bI ’ /*  - [ R  l /nc l l”  

Equation (27) immediately gives 
to see that 

‘ / d e  / &  = O  = b ‘ I2.  From the definition of E it is simple 

(28) ( P ’  - P , )  = b ‘ j 2 ( p  - P J  
or yp’ = vll= 2. 

cell at cp +Acp be conserved. This leads to the RG transformation 
We can also fix p = p,(cp) and also demand that the probability of a path across the 

~ ‘ [ R , l ( n , + A n ~ ) b l l / 2  ~ [ R ~ / ( n ~ + A n ~ ) l ~ / ~  I - [ R ~ / ( n , + A n ~ ) b l ” ~  - [ R ~ l ( n , + A n , ) l ” ~  
exp(-$y2) dy = \ exp(-by2) dy. (29) 

Equation (29) gives (in the limit r1 -* 00, which is its range of validity (Domany and 
Kinzel 1981) d(An)/d(An’) = 1. 

We can see then that the scaling fields are E and An, with eigenvalues b112 and 1 
respectively. 

From the form of E it is clear that x = 1 and y, =i. Clearly from the above 
considerations and Kinzel and Yeomans (198 1) we can also predict the crossover 
exponent for non-trivial (e.g. pH = pv = p ,  cp = 0) direction. 

x = Yll- = vll(i - i / e )  x =0.64*0.01. 

In conclusion we have shown that the perpendicular correlation length is not a true 
length in a RG sense but is a pseudo length (i.e. a length times an angle). This has 
important consequences for the notion of hyperscaling and what is meant by dimension. 
These ideas may also have some importance for other problems with anisotropies such 
as Lifshitz points and anisotropic percolation. These points are being investigated. 

We should like to acknowledge very interesting and useful discussions with K Binder 
and S Redner. 
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